Effects of ovariectomy and hindlimb unloading on skeletal muscle.

نویسندگان

  • J S Fisher
  • E M Hasser
  • M Brown
چکیده

Female rats (7-8 mo old, n = 40) were randomly placed into the intact control (Int) and ovariectomized control (Ovx) groups. Two weeks after ovariectomy, animals were further divided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomized hindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situ contractile tests were performed on soleus (Sol), plantaris (Plan), peroneus longus (Per), and extensor digitorum longus (EDL) muscles. Body weight and Sol mass were approximately 22% larger in Ovx than in Int group and approximately 18% smaller in both HU groups than in Int rats (Ovx x HU interaction, P < 0.05), and there was a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading (atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles was unaffected by either ovariectomy or hindlimb unloading. Time to peak twitch tension for EDL and one-half relaxation times for Sol, Plan, Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that 1) ovariectomy led to similar increases of approximately 20% in body weight and plantar flexor mass; 2) hindlimb unloading may have prevented ovariectomy-related muscle growth; 3) greater atrophy may have occurred in Sol and Plan of Ovx animals compared with controls; and 4) removal of ovarian hormonal influence decreased skeletal muscle contraction times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle

Physical inactivity leads to muscle atrophy and capillary regression in the skeletal muscle. Intermittent loading during hindlimb unloading attenuates the muscle atrophy, meanwhile the capillary regression in the skeletal muscle is not suppressed. Nucleoprotein has antioxidant capacity and may prevent capillary regression. Therefore, we assessed the combined effects of intermittent loading with...

متن کامل

Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass.

The recovery of atrophied muscle mass in animals is thought to be dependent on a number of factors including hormones, cytokines, and/or growth factor expression. The Akt/mammalian target of rapamycin (mTOR) signaling pathway is believed to be activated by these various factors, resulting in skeletal muscle growth through the initiation of protein synthesis. It was hypothesized that surgical re...

متن کامل

Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles.

It has been hypothesized that microgravity-induced orthostatic hypotension may result from an exaggerated vasodilatory responsiveness of arteries. The purpose of this study was to determine whether skeletal muscle arterioles exhibit enhanced vasodilation in rats after 2 wk of hindlimb unloading (HU). First-order arterioles isolated from soleus and white gastrocnemius muscles were tested in vitr...

متن کامل

Chronic Exercise Training Down-Regulates TNF-α and Atrogin-1/MAFbx in Mouse Gastrocnemius Muscle Atrophy Induced by Hindlimb Unloading

The purpose of this study was to investigate the effect of chronic moderate-intensity training in order to prevent muscle atrophy with a focus on TNF-α and atrogin-1/MAFbx as main proteolytic indicators. Hindlimb unloading model of mice received treadmill running exercise for 1 hr per day during hindlimb unloading period of 6 weeks. The gastrocnemius muscle mass, muscle fiber cross-sectional ar...

متن کامل

EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading.

Reduced mechanical loading during bedrest, spaceflight, and casting, causes rapid morphological changes in skeletal muscle: fiber atrophy and reduction of slow-twitch fibers. An emerging signaling event in response to unloading is the translocation of neuronal nitric oxide synthase (nNOSμ) from the sarcolemma to the cytosol. We used EUK-134, a cell-permeable mimetic of superoxide dismutase and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 4  شماره 

صفحات  -

تاریخ انتشار 1998